
Spectator: An Open Source Document Viewer
Jean-Philippe Gauthier, Adam Roegiest

Kira Systems
Toronto, Canada

{jp.gauthier,adam.roegiest}@kirasystems.com

ABSTRACT
Many information retrieval tasks require viewing documents in
some manner, whether this is to view information in context or to
provide annotations for some downstream task (e.g., evaluation or
system training). Building a high-quality document viewer often
exceeds the resources of many researchers and so, in this paper,
we describe the design and architecture of our new open-source
document viewer, Spectator. In particular, we provide a look into
the algorithmic details of how Spectator accomplishes tasks like
mapping annotations back to the canonical document. Moreover,
we provide a sampling of the use cases that we envision for Specta-
tor, potential future additions depending on community need and
support, and highlight situations where Spectator may not be a
good fit. Furthermore, we provide a brief description of the sample
application that we bundle with Spectator to demonstrate how one
might use it within the context of a larger system.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools.

KEYWORDS
document viewer, open source, ocr, annotation
ACM Reference Format:
Jean-Philippe Gauthier, Adam Roegiest. 2020. Spectator: An Open Source
Document Viewer. In 2020 Conference on Human Information Interaction
and Retrieval (CHIIR ’20), March 14–18, 2020, Vancouver, BC, Canada. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3343413.3377986

1 INTRODUCTION
Suppose we had an annotation task that required a user (or users)
to proceed through a document collection and mark up documents
with respect to correctness, relevance, or other comments. Naively,
one might be inclined to pay for an existing document viewer (e.g.,
a PDF viewer, Nvivo1) with requisite annotation functionality or
create their own bespoke viewer (e.g., as a web app) or attempt to
retrofit existing viewers. The former may require custom plugins
for applications to harmonize annotation across different document
formats (e.g., to collect and collate the annotations) [9, 15]. While
1www.qsrinternational.com/nvivo

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHIIR ’20, March 14–18, 2020, Vancouver, BC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6892-6/20/03. . . $15.00
https://doi.org/10.1145/3343413.3377986

the latter options may limit reproducibility due to the ever changing
nature of how applications are rendered and created (e.g., new ver-
sions of a JavaScript engine may subtly change how users interact
with the system due to changes in layout).

While there aremany different document viewers available to the
community today, several [2, 3] are not under active development,
one [5] is desktop only which limits ease of deployment, two [1, 4]
are primarily only for viewing and do not have good integration
to select text in reference to the source, and the one [4] closest to
our use case only works with PDFs. Accordingly, we believe that
there still remains a need for a battle-tested document viewer that is
capable of providing a high-quality experience for both developers
and users in the community. We believe that Spectator, which is
derived from our in-production document viewer, helps to fill that
need in the community with a goal towards building an extensible
behind the scenes framework to allow others to build on our work.

In this paper, we detail the design of our open source document
viewer, Spectator2 (Figure 1), which aims to address several of these
issues. Our document viewer works with rendered images of docu-
ments (e.g., pages from a PDF, or rendered HTML images) allowing
users to annotate sections of those documents and translates them
back to identified words (identified through OCR). By placing this
requirement of images rather than raw documents, we are able to
use Spectator in a document format agnostic way, limited only by
our ability to produce said images. In doing so, we have a canonical
reference for what the document looked like at a fixed-point in
time meaning that any subsequent examination refers to the same
rendered document.

We then present a series of tasks for which we imagine someone
might utilize Spectator. In particular, these tasks relate to generat-
ing training data for ML algorithms, test collection creation, and
document annotation for learning and training. While we have
designed Spectator to be meant for “real-world” use, we are also
distributing it with the intent of facilitating consistent and repli-
cable interactive IR user studies and experiments. We also hope
that the community will help in building additional components or
machinery around such a platform for the benefit of all.

Following with a brief overview of Spectator’s limitation, we
provide a brief overview of the demo application that allows users
to annotate PDF documents and collects light behavioural metrics.
We are distributing this application with Spectator as a means to
show what is possible when one combines our document viewer
with several other open source libraries. In doing so, we hope to
kick start some of the interest in the framework so that others do
not have to start from scratch and have existing structure to use as
inspiration.

2Available at https://github.com/kirasystems/spectator.

https://doi.org/10.1145/3343413.3377986
www.qsrinternational.com/nvivo
https://doi.org/10.1145/3343413.3377986
https://github.com/kirasystems/spectator

CHIIR ’20, March 14–18, 2020, Vancouver, BC, Canada Jean-Philippe Gauthier, Adam Roegiest

Figure 1: A screenshot of Spectator in the form of our demo
application.

2 DESIGN
The major architectural choice made in our design viewer was
to provide an image of the original source document to the user.
Due to the nature of our task, it is necessary to run OCR over
the original document and that is a lossy process. By providing a
visible copy of the original document, we allow users to annotate
and highlight text based upon what they see rather than what the
OCR process (and any subsequent rendering) would dictate they
should see. The one major pitfall to this approach is that we are
required to pre-render to images all documents and then OCR those
documents, even those digitally born documents, to ensure that we
have the requisite image(s) and positional information.We note that
while this approach mitigates some of the challenges associated
with maintaining annotations on changing documents [9], it does
create new efforts in that updated documents must be rendered and
annotated. Figure 2 provides an example of how documents would
be processed in a Spectator-based application. We note that is is
possible to naively support various born-digital formats but this is
not on our near term roadmap for Spectator.

To facilitate the annotation and “selection” of text, we require
that the OCR process (or other post-processing) map the identified
characters/runes to their (x,y) positions in the source document.
We also require that this process returns an indexed sequence of
characters. When highlighting, we begin recording the initial po-
sition of the cursor on the mousedown event and the final position
of the cursor on the related mouseup event. Using these two posi-
tions, an R-tree 3 filled with the character positions and the indexed
sequence of characters, it is possible to identify the starting and

3A specialized data structure for looking up spatially related data.

Figure 2: An example of the processing flow of documents
for usewith Spectator. Documents are first fed into an image
rendering engine, the images are stored in a database, and
then sent for OCR, the OCR’d text and additional layout in-
formation is stored in a database. The images and document
data is then used by a Spectator application.

Figure 3: The selection process using an R-Tree

ending characters of the selection. This technique is illustrated in
Figure 3. To identify the starting character, the R-tree will be used to
find all characters intersecting the green area. Since the characters
are indexed, we will take the one with the smallest index to be
the starting character. The same technique is used to identify the
ending character, but using the blue area and the highest index.
It’s also worth mentioning that users expect different selections
depending on the direction and the sense of the direction dictating
the choice of the starting and ending characters.

Annotations are defined by the starting and ending character
positions in the text. They can then be stored in a database as
separate entries, allowing the user to tag the text for later processing.
We note that at no point during this process is the user actively
engaging with textual elements and we merely “draw” a coloured
box over the selected text. The actual identification of what textual
elements were selected is determined behind the scenes but we
note that to facilitate efficient operations, we may cache the page’s
data in the browser to facilitate the efficient implementation of
specialized operations (e.g., copy and paste).

Annotations are drawn directly on top of the image of the page in
a SVG element that matches its size. The viewbox property uses the
dimensions of the source document. It allows us to use the source
positions without having to transpose them. Given an annotation
and the indexed sequence of characters, it is possible to compute
the enclosing rectangles that would cover the different lines of text

Spectator: An Open Source Document Viewer CHIIR ’20, March 14–18, 2020, Vancouver, BC, Canada

overlapping the annotation. To speed up the computation of these
enclosing rectangles, we require the indexed sequence of characters
to also contain the line numbers. That way, it makes it trivial to
compute the rectangles for the associated lines. Finally, there is
the requirement to be able to navigate directly to the different
annotations. In order to do that, we also require annotations to
contain the (x,y) position of its first character. By converting the
positions to percentages of the source document, it is possible to
map it back to the document in the browser and navigate directly
to the annotation.

We note that it may be tempting to “overlay” the OCR’d text
on top of the image (in a transparent manner) to facilitate the
selection process. While this does work, it requires potentially more
burden on the user’s browser to store the invisible text, position it
properly and have the selection process work as expected. Moreover,
it prevents us from allowing users to zoom in/out on the image
as we cannot as easily modify the size of the overlaid text to align
with the desired magnification. This particular limitation was a
pain point in an earlier version of our document viewer when
users wanted to get a closer look at the source text. However, using
the positional method described above, mapping the location of
highlights on the zoomed text to the original is a matter of relatively
straightforward math that we depict at a high-level in Figure 4. We
note that approaches that do not actually overlay annotations on
the document can utilize more simple structures (e.g., XML), such
as those by Baldwin [7] and Thomas and Brailsford [16].

Moreover, the overlaid approach requires annotating each char-
acter (or token) with a span to facilitate highlighting (i.e., we can
modify a particular set of spans’ style to reflect being highlighted).
While simple and easy to implement, this can have drastic per-
formance ramifications as each token that is enclosed in a span
increases the size of the DOM and puts a greater burden on the
user’s browser to maintain this and efficiently perform modifica-
tions as needed.

2.1 Implementation Details
The entirety of Spectator is written in a combination of JavaScript,
TypeScript4, and React5 to provide a modern implementation that
interested developers will find easy to modify, debug, and under-
stand. In doing so, we hope to make Spectator accessible to inter-
ested parties without requiring knowledge of “old” or “niche” web
technologies that practitioners may have little knowledge about.

To aid in general user accessibility, our highlightingwill alternate
between one of 12 predefined colours. These colours were selected
to be maximally distinct and allow easy disambiguation [11]. How-
ever, this selection process was not perfect and we are open to
suggestion on selecting more universally acceptable colours or pro-
viding options to accommodate differing preferences and needs. To
let users read the text behind the annotations, we used an opacity
of 30% and the CSS property mix-blend-mode to multiply.

2.2 Potential Additions
One of the most obvious additions to Spectator is the ability to
search within a document. This was an intentional decision to allow

4https://www.typescriptlang.org/
5https://reactjs.org/

Figure 4: A demonstration of the math behind mapping
zoomed document highlights to the original document.

developers and interested parties to use Spectator first and then
have a cogent discussion on how best to incorporate search into
Spectator. Search (and highlighting) is relatively straightforward to
implement if we only care about boolean-based regular expression
search as we just map matching text spans to the locations in the
containing image. However, we did not want to be prescriptive and
bake-in functionality that people may not desire and leave it for
the community to help select an appropriate choice.

Our overriding goal to make Spectator was to make it as exten-
sible as possible without sacrificing ease of use and performance.
Accordingly, we have left several features out that may be of benefit
to the community (e.g., user accounts, main navigation screens) as
those are likely to be tailored to individual user needs (e.g., user
studies may require different setups). Although, we do plan to re-
lease components that can be used to help design and facilitate the
creation of such additional functionality.

Additionally, we have left much user behaviour tracking out
of the initial release. This was intentionally done to avoid being
prescriptive. Our demo application does highlight how one can
easily add such tracking through the judicious reuse of components
and modern front-end development practices. We are not opposed
to baking some of this tracking into the existing components but
did not want to be heavy handed in the initial release.

Finally, Spectator has had limited optimization for mobile/tablet
use cases due to limited resourcing available to us. While there is
some internal demand to better support these interaction styles,
we have not had a chance to properly investigate them and design
accessible solutions. Insofar as touch/stylus actions are translated
by the browser to equivalent mouse events, Spectator will work as
advertised. This means that the ability to annotate the documents
may be limited as we have not found many touch-based browsers
to emulate the mousedown/mouseup events in a way that facilitates
this action. Accordingly, we hope to provide additional support for
this in the future to make Spectator more generally accessible.

3 USE CASES
We envision our primary use case to be any situation where indi-
viduals want to browse and annotate original source documents (or
a rendered variant thereof). By annotating on top of the source text,

https://www.typescriptlang.org/
https://reactjs.org/

CHIIR ’20, March 14–18, 2020, Vancouver, BC, Canada Jean-Philippe Gauthier, Adam Roegiest

users are able to have a consistent and controllable viewing experi-
ence. For example, if we were to have users annotate text on a web
page, the typical approach might be to strip out all non-visible text
(e.g., HTML, and Javascript) and render that in a human readable
way. However, this loses much of the contextual information that
may be gleaned from the “canonical” in-browser view. By rendering
to a canonical format (e.g., using a headless browser and saving
to PDF), we ensure a version that is fixed in time to a particular
rendering service which also may help increase reproducible ex-
periences.6 Though several studies [10, 14] have used in-browser
annotation extensions to facilitate same goal.

These annotations can then be used to facilitate training ma-
chine learning systems, evaluating Information Retrieval systems,
or for providing feedback to other users (e.g., clarifications and
corrections). The first is the primary use case for our internal use of
Spectator (i.e., annotations are used to train the system to identify
similar pieces of text). By referencing the original document, we
are able to use positional features (e.g., “the token above this one,”
whether a token is centered on a page) to help train the classifier
to recognize the desired text. Spectator can also be used to allow
users to provide feedback on automatically generated passage-level
annotations on a canonical document rather than a stripped version
(i.e., one can replicate systems like HiCal [6] in our framework).

Another beneficial use to Spectator is being able to annotate
source documents easily means that generating test collections
for (sub)passage-level relevance (e.g., question answering, faceted
retrieval) may be expedited and be able to generate a canonical ref-
erence back to the source rather than using character/word overlap
between annotated passages and user identified ones.

There has also been work showing that teaching/training individ-
uals with high quality annotations or providing tools to make such
annotations can yield positive downstream behaviours [8, 12, 13, 17].
Spectator can provide a document type agnostic platform to facili-
tate this as well as localizing such annotations into a single source
for easy use and updating. Internally, we have seen the benefits of
combining high quality manual annotations and noisier machine
learned annotations to help less experienced users learn about
various concepts and topics.

Finally, as an aspirational use case, we envision Spectator (or
an application derived from it) being used to help facilitate anal-
ysis and research in general. That is, by providing a high-quality
document viewer to the community, we hope to remove some of
the barriers that arise when researchers are relegated to using com-
mercial software (e.g., Nvivo) to perform annotation/coding and
analysis of research data. Such reliance on commercial software
can mean that knowledge sharing and transfer can be limited to
those researchers with the finances to afford it. Accordingly, it is
our hope that the community runs with Spectator (or a tool like
it) to build more inclusive and available research platforms and
experimental systems.

4 LIMITATIONS
The most obvious limitation of Spectator is that it relies on ren-
dered images and OCR results to present information to users and

6As a browser’s underlying renderer may change over time and so change a page’s
layout and look.

facilitate annotations. This has several technical constraints in that
new document types are not “plug and play” but require rendering
to images before they can be used. Moreover, it means that updated
documents must be reprocessed and annotations potentially moved
over by hand. This limitation results from our production version of
Spectator being required to handle scanned documents and not just
digital documents. In so doing, we avoid some pitfalls [9] of dealing
with the raw documents but create others for those interacting with
constantly changing documents.

The other main limitation of Spectator is that it a web-based
document viewer and this may limit how it can be used. This is
mitigated by the fact that there are technologies that enable embed-
ding web applications as desktop ones (e.g., Electron7). While such
technologies are not always optimal, they are constantly improving
and we believe make Spectator viable even in a desktop-only mode.

5 DEMO APPLICATION
Our demo application is straightforward pipeline to facilitate doc-
ument annotation of a series of academic papers. Given a set of
papers, the pipeline will convert each paper to an image per page
(using ImageMagick8), run each page through Google’s Tesseract
OCR software9 to produce the OCR’d text and necessary positional
information for annotation, and will then store all of this infor-
mation as needed in a lightweight database. A lightweight server
is then stood up that serves content for display in Spectator. This
directly mimics the flow in Figure 2.

The goal of the demo application is simply to provide a minimal
viable example of what can be done with Spectator. Included in
this is some basic behavioural tracking of time spent reading a
document, amount of content annotated on a document, and the
number of annotations made.

Accordingly, we have not gone to great lengths to make a “pro-
duction ready” application and have done enough to give interested
parties a flavour for what is possible and what workflows might
look like. In particular, a real workflow would allow processing
of different document types and potentially different document
qualities (e.g., scans). Such workflows go beyond Spectator and
require a more extensive system that we cannot offer at this time.

6 CONCLUSION
We have presented an overview of our document viewer frame-
work, Spectator, and have focused on the design and implemen-
tation decisions taken during its implementation. While many of
these decisions were motivated by our own internal use cases, we
believe that others will find the availability of a high-quality, exten-
sible document viewer to be of benefit. In particular, those cases
where developing one’s own document viewer is burdensome and
secondary to the task at hand. Such use cases include interactive IR
systems that have ML/AI components with a human-in-the-loop,
document annotation for test collection creation, and providing
junior users with pre-annotated examples to learn from.

7https://electronjs.org/
8imagemagick.org
9https://github.com/tesseract-ocr/tesseract

https://electronjs.org/
imagemagick.org
https://github.com/tesseract-ocr/tesseract

Spectator: An Open Source Document Viewer CHIIR ’20, March 14–18, 2020, Vancouver, BC, Canada

REFERENCES
[1] [n.d.]. collective.documentviewer. https://github.com/collective/collective.

documentviewer.
[2] [n.d.]. The NYTimes Document Viewer. https://github.com/documentcloud/

document-viewer.
[3] [n.d.]. viewerjs. https://github.com/webodf/ViewerJS.
[4] [n.d.]. web-document-viewer. https://github.com/Atalasoft/web-document-

viewer.
[5] [n.d.]. zathura. https://github.com/pwmt/zathura.
[6] Mustafa Abualsaud, Nimesh Ghelani, Haotian Zhang, Mark D. Smucker, Gordon V.

Cormack, and Maura R. Grossman. 2018. A System for Efficient High-Recall Re-
trieval. In The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval (SIGIR ’18).

[7] Michael K. Baldwin. 2009. xDOC: A System for XML Based Document Annotation
and Searching. In Proceedings of the 47th Annual Southeast Regional Conference
(ACM-SE 47).

[8] Aaron Bauer and Kenneth R. Koedinger. 2008. Note-taking, Selecting, and Choice:
Designing Interfaces That Encourage Smaller Selections. In Proceedings of the
8th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’08).

[9] A. J. Bernheim Brush, David Bargeron, Anoop Gupta, and J. J. Cadiz. [n.d.].
Robust Annotation Positioning in Digital Documents. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’01).

[10] J. J. Cadiz, Anop Gupta, and Jonathan Grudin. 2000. Using Web Annotations for
Asynchronous Collaboration Around Documents. In Proceedings of the 2000 ACM

Conference on Computer Supported Cooperative Work (CSCW ’00).
[11] Mark Harrower and Cynthia A. Brewer. 2003. ColorBrewer.org: An On-

line Tool for Selecting Colour Schemes for Maps. The Cartographic
Journal 40, 1 (2003), 27–37. https://doi.org/10.1179/000870403235002042
arXiv:https://www.tandfonline.com/doi/pdf/10.1179/000870403235002042

[12] Catherine C. Marshall, Morgan N. Price, Gene Golovchinsky, and Bill N. Schilit.
2001. Designing e-Books for Legal Research. In Proceedings of the 1st ACM/IEEE-
CS Joint Conference on Digital Libraries (JCDL ’01).

[13] Mei-Hua Pan, Naomi Yamashita, and Hao-Chuan Wang. 2017. Task Rebalancing:
Improving Multilingual Communication with Native Speakers-Generated High-
lights on Automated Transcripts. In Proceedings of the 2017 ACM Conference on
Computer Supported Cooperative Work and Social Computing (CSCW ’17).

[14] Beryl Plimmer, Samuel Hsiao-Heng Chang, Meghavi Doshi, Laura Laycock, and
Nilanthi Seneviratne. 2010. iAnnotate: Exploring Multi-user Ink Annotation in
Web Browsers. In Proceedings of the Eleventh Australasian Conference on User
Interface - Volume 106 (AUIC ’10).

[15] Ahmed A.O. Tayeh, Payam Ebrahimi, and Beat Signer. 2018. Cross-Media Docu-
ment Linking and Navigation. In Proceedings of the ACM Symposium on Document
Engineering 2018 (DocEng ’18).

[16] Peter L. Thomas and David F. Brailsford. 2005. Enhancing Composite Digital
Documents Using XML-based Standoff Markup. In Proceedings of the 2005 ACM
Symposium on Document Engineering (DocEng ’05).

[17] Joanna L. Wolfe. 2000. Effects of Annotations on Student Readers and Writers.
In Proceedings of the Fifth ACM Conference on Digital Libraries (DL ’00).

https://github.com/collective/collective.documentviewer
https://github.com/collective/collective.documentviewer
https://github.com/documentcloud/document-viewer
https://github.com/documentcloud/document-viewer
https://github.com/webodf/ViewerJS
https://github.com/Atalasoft/web-document-viewer
https://github.com/Atalasoft/web-document-viewer
https://github.com/pwmt/zathura
https://doi.org/10.1179/000870403235002042
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1179/000870403235002042

	Abstract
	1 Introduction
	2 Design
	2.1 Implementation Details
	2.2 Potential Additions

	3 Use Cases
	4 Limitations
	5 Demo Application
	6 Conclusion
	References

